B2CShop 多端B2C商城系统实现多终端触达,全平台支持, 后台管理端、PC端、各种小程序端、H5端,多终端触达消费者,多端数据同步。
词
微分
wēi fēn
包含微分的词或成语
微分的基本释意
-
见〖微积分〗。
微分的详细介绍
稍稍看清楚。
宋 司马光 《又和早春夜雪》诗:“玉巵深可敌,银烛近微分。”
卑微的名分。
《宋书·刘式之传》:“ 刘式之 於国家粗有微分,偷数百万钱何有,况不偷邪!”
微薄的情分。
元 关汉卿 《谢天香》第一折:“你覰他交椅上抬頦样儿,待的你不同前次,他则是微分间,将表字呼之。”
微分的释意
设函数y=f(x)在某区间有定义,x0和x0+δx在这个区间内,如果函数的增量δy=f(x0+δx)-f(x0)可表示为δy=aδx+﹐(δx),其中a是不依赖于δx的常数,而o(δx)是比δx高阶的无穷小量,那么称函数y=f(x)在点x0是可微的,而aδx称为函数y=f(x)在点x0相应于自变量增量δx的微分,记作dy=aδx。这时a=f′(x),再记δx=dx,则dy=f′(x)dx。
微分的百科
在数学中,微分是对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的变化量取值作足够小时,函数的值是怎样改变的。比如,x的变化量△x趋于0时,则记作微元dx。当某些函数的自变量有一个微小的改变时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量△x,可以表示成△x和一个与△x无关,只与函数及有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在△x上的值。另一部分是比△x更高阶的无穷小,也就是说除以△x后仍然会趋于零。当改变量很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在x处的微分,记作df(x)或f'(x)dx。如果一个函数在某处具有以上的性质,就称此函数在该点可微。不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量映射到变化量的线性部分的线性映射。这个映射也被称为切映射。给定的函数在一点的微分如果存在,就一定是唯一的。
微分的英文翻译
differentiation; (math.) differential (of a function); differential (equation etc); to differentiate