B2CShop 多端B2C商城系统实现多终端触达,全平台支持, 后台管理端、PC端、各种小程序端、H5端,多终端触达消费者,多端数据同步。
三角函数
sān jiǎo hán shù
三角函数包含的字
包含三角函数的词或成语
三角函数的基本释意
[ sān jiǎo hán shù ]

在直角三角形中,各边长度两两之间的比值是锐角的函数。每个锐角有六个三角函数,记做正弦(sin)、余弦(cos)、正切(tan, 或tg)、余切(cot, 或ctg)、正割(sec)、余割(csc)。例如锐角∠A的三角函数:,见图㈠。三角函数的概念可推广到任意角。对于任意角α,以角的顶点为原点,角的始边作X轴正方向,建立平面直角坐标系XOY,设P(x,y)为角α终边上任意一点,P点到原点距离为。则, 见图㈡。

三角函数的详细介绍
  1. 设以θ为一锐角的直角三角形的三边为a、b、c(如图),比各边长度两两之间的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的函数,称为“三角函数”。用坐标法还可以把三角函数的概念推广到任意角。

三角函数的释意
在直角三角形中,各边长度两两之间的比值是锐角的函数。每个锐角有六个三角函数,记作正弦(sin)、余弦(cos)、正切(tan,或tg)、余切(cot,或ctg)、正割(sec)、余割(csc)。例如锐角∠A的三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a,secA=c/b,cscA=c/a,见图(一)。三角函数的概念可推广到任意角。对于任意角α,以角的顶点为原点,角的始边作X轴正方向,建立平面直角坐标系XOY,设P(x,y)为角α终边上任意一点,P点到原点距离为r=√(x²+y²)>0。则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y,见图(二)。
三角函数的百科
6类基本初等函数之一。三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
三角函数的英文翻译
trigonometric function
B2CShop商城系统
多端B2C商城系统
B2CShop 多端B2C商城系统实现多终端触达,全平台支持, 后台管理端、PC端、各种小程序端、H5端,多终端触达消费者,多端数据同步。